Buscar
Research and Design of Snow Hydrology Sensors and Instrumentation
Cód:
491_9789811403422
This book is a collection of eight in-depth and detailed research papers authored by Dr. Raman K Attri between 1996 to 2005. The book presents early-career scientific work by the author as a scientist at a research organization. The book provides the conceptual background and key electronics and mechanical design principles used in designing sensors and instrumentation systems to measure snow hydrological parameters. The systems discussed in this book can be used to measure snow depth, layer temperature, temperature distribution profile, surface porosity, etc. The snow parameters measured from instruments and sensors discussed in this book are integrated into larger systems and are used in computer-driven models for snow avalanche predictions.The book presents the design challenges and design methods from electronics and instrumentation design point of view. While the book provides an essential understanding of analog electronics design and associated mechanical design for snow hydrological sensors, the book also presents the background theoretical and mathematical models from snow hydrology physics that governs this electronics design.The first research paper discusses the design control techniques used to the design a remote surface detector to detect objects with porous, uneven, irregular surfaces like snow using ultrasonic beams.The second research paper describes signal processing techniques and electronics design approaches to design a snow depth sensor with improved sensitivity and directional response using Ultrasonic Pulse-Transit Method.The third research paper explains theoretical and mathematical model that governs the physical, mechanical, and electronics design to implement the theory of Arrayed Ultrasonic transducers to shape up the directional response and beam width of an ultrasonic beam to improve the chances of receiving sufficient reflection from the non-smooth, highly porous, uneven, non-planar, irregular snow surface.The fou
Veja mais